Diffuse Interstellar Bands
   HOME

TheInfoList



OR:

Diffuse interstellar bands (DIBs) are absorption features seen in the spectra of astronomical objects in the
Milky Way The Milky Way is the galaxy that includes our Solar System, with the name describing the galaxy's appearance from Earth: a hazy band of light seen in the night sky formed from stars that cannot be individually distinguished by the naked eye. ...
and other galaxies. They are caused by the absorption of light by the interstellar medium. Circa 500 bands have now been seen, in
ultraviolet Ultraviolet (UV) is a form of electromagnetic radiation with wavelength from 10 nm (with a corresponding frequency around 30  PHz) to 400 nm (750  THz), shorter than that of visible light, but longer than X-rays. UV radiation ...
, visible and
infrared Infrared (IR), sometimes called infrared light, is electromagnetic radiation (EMR) with wavelengths longer than those of visible light. It is therefore invisible to the human eye. IR is generally understood to encompass wavelengths from around ...
wavelengths. The origin of most DIBs remains unknown, with common suggestions being
polycyclic aromatic hydrocarbon A polycyclic aromatic hydrocarbon (PAH) is a class of organic compounds that is composed of multiple aromatic rings. The simplest representative is naphthalene, having two aromatic rings and the three-ring compounds anthracene and phenanthrene. ...
s and other large
carbon Carbon () is a chemical element with the symbol C and atomic number 6. It is nonmetallic and tetravalent—its atom making four electrons available to form covalent chemical bonds. It belongs to group 14 of the periodic table. Carbon mak ...
-bearing molecules. Only one DIB carrier has been identified: ionised
buckminsterfullerene Buckminsterfullerene is a type of fullerene with the formula C60. It has a cage-like fused-ring structure (truncated icosahedron) made of twenty hexagons and twelve pentagons, and resembles a soccer ball. Each of its 60 carbon atoms is bonded ...
(C60+), which is responsible for several DIBs in the near-infrared. The carriers of most DIBs remain unidentified.


Discovery and history

Much astronomical work relies on the study of spectra - the light from astronomical objects dispersed using a
prism Prism usually refers to: * Prism (optics), a transparent optical component with flat surfaces that refract light * Prism (geometry), a kind of polyhedron Prism may also refer to: Science and mathematics * Prism (geology), a type of sedimentary ...
or, more usually, a
diffraction grating In optics, a diffraction grating is an optical component with a periodic structure that diffracts light into several beams travelling in different directions (i.e., different diffraction angles). The emerging coloration is a form of structur ...
. A typical stellar spectrum will consist of a continuum, containing absorption lines, each of which is attributed to a particular
atom Every atom is composed of a nucleus and one or more electrons bound to the nucleus. The nucleus is made of one or more protons and a number of neutrons. Only the most common variety of hydrogen has no neutrons. Every solid, liquid, gas, ...
ic
energy level A quantum mechanical system or particle that is bound—that is, confined spatially—can only take on certain discrete values of energy, called energy levels. This contrasts with classical particles, which can have any amount of energy. The t ...
transition in the atmosphere of the star. The appearances of all astronomical objects are affected by
extinction Extinction is the termination of a kind of organism or of a group of kinds (taxon), usually a species. The moment of extinction is generally considered to be the death of the last individual of the species, although the capacity to breed and ...
, the absorption and scattering of
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless, so they a ...
s by the interstellar medium. Relevant to DIBs is interstellar absorption, which predominantly affects the whole spectrum in a continuous way, rather than causing absorption lines. In 1922, though, astronomer Mary Lea Heger first observed a number of line-like absorption features which seemed to be interstellar in origin. Their interstellar nature was shown by the fact that the strength of the observed absorption was roughly proportional to the extinction, and that in objects with widely differing
radial velocities The radial velocity or line-of-sight velocity, also known as radial speed or range rate, of a target with respect to an observer is the rate of change of the distance or range between the two points. It is equivalent to the vector projection o ...
the absorption bands were not affected by Doppler shifting, implying that the absorption was not occurring in or around the object concerned. The name Diffuse Interstellar Band, or DIB for short, was coined to reflect the fact that the absorption features are much broader than the normal absorption lines seen in stellar spectra. The first DIBs observed were those at wavelengths 578.0 and 579.7 nanometers (visible light corresponds to a wavelength range of 400 - 700 nanometers). Other strong DIBs are seen at 628.4, 661.4 and 443.0 nm. The 443.0 nm DIB is particularly broad at about 1.2 nm across - typical intrinsic stellar absorption features are 0.1 nm or less across. Later
spectroscopic Spectroscopy is the field of study that measures and interprets the electromagnetic spectra that result from the interaction between electromagnetic radiation and matter as a function of the wavelength or frequency of the radiation. Matter wa ...
studies at higher spectral resolution and sensitivity revealed more and more DIBs; a catalogue of them in 1975 contained 25 known DIBs, and a decade later the number known had more than doubled. The first detection-limited survey was published by Peter Jenniskens and Xavier Desert in 1994 (see Figure above), which led to the first conference on The Diffuse Interstellar Bands at the University of Colorado in Boulder on May 16–19, 1994. Today circa 500 have been detected. In recent years, very high resolution spectrographs on the world's most powerful
telescope A telescope is a device used to observe distant objects by their emission, absorption, or reflection of electromagnetic radiation. Originally meaning only an optical instrument using lenses, curved mirrors, or a combination of both to observ ...
s have been used to observe and analyse DIBs. Spectral resolutions of 0.005 nm are now routine using instruments at observatories such as the European Southern Observatory at Cerro Paranal,
Chile Chile, officially the Republic of Chile, is a country in the western part of South America. It is the southernmost country in the world, and the closest to Antarctica, occupying a long and narrow strip of land between the Andes to the east a ...
, and the Anglo-Australian Observatory in Australia, and at these high resolutions, many DIBs are found to contain considerable sub-structure.


The nature of the carriers

The great problem with DIBs, apparent from the earliest observations, was that their central wavelengths did not correspond with any known
spectral line A spectral line is a dark or bright line in an otherwise uniform and continuous spectrum, resulting from emission or absorption of light in a narrow frequency range, compared with the nearby frequencies. Spectral lines are often used to iden ...
s of any
ion An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by conve ...
or
molecule A molecule is a group of two or more atoms held together by attractive forces known as chemical bonds; depending on context, the term may or may not include ions which satisfy this criterion. In quantum physics, organic chemistry, and bioche ...
, and so the material which was responsible for the absorption could not be identified. A large number of theories were advanced as the number of known DIBs grew, and determining the nature of the absorbing material (the 'carrier') became a crucial problem in astrophysics. One important observational result is that the strengths of most DIBs are not strongly correlated with each other. This means that there must be many carriers, rather than one carrier responsible for all DIBs. Also significant is that the strength of DIBs is broadly correlated with the
interstellar extinction In astronomy, extinction is the absorption and scattering of electromagnetic radiation by dust and gas between an emitting astronomical object and the observer. Interstellar extinction was first documented as such in 1930 by Robert Julius Trump ...
. Extinction is caused by
interstellar dust Cosmic dust, also called extraterrestrial dust, star dust or space dust, is dust which exists in outer space, or has fallen on Earth. Most cosmic dust particles measure between a few molecules and 0.1 mm (100 micrometers). Larger particles are c ...
; however, DIBs, are not likely to be caused by dust grains. The existence of sub-structure in DIBs supports the idea that they are caused by molecules. Substructure results from band heads in the rotational band contour and from isotope substitution. In a molecule containing, say, three
carbon Carbon () is a chemical element with the symbol C and atomic number 6. It is nonmetallic and tetravalent—its atom making four electrons available to form covalent chemical bonds. It belongs to group 14 of the periodic table. Carbon mak ...
atoms, some of the carbon will be in the form of the
carbon-13 Carbon-13 (13C) is a natural, stable isotope of carbon with a nucleus containing six protons and seven neutrons. As one of the environmental isotopes, it makes up about 1.1% of all natural carbon on Earth. Detection by mass spectrometry A mas ...
isotope Isotopes are two or more types of atoms that have the same atomic number (number of protons in their nuclei) and position in the periodic table (and hence belong to the same chemical element), and that differ in nucleon numbers (mass numb ...
, so that while most molecules will contain three carbon-12 atoms, some will contain two 12C atoms and one 13C atom, much less will contain one 12C and two 13C, and a very small fraction will contain three 13C molecules. Each of these forms of the molecule will create an absorption line at a slightly different rest wavelength. The most likely candidate molecules for producing DIBs are thought to be large carbon-bearing molecules, which are common in the interstellar medium.
Polycyclic aromatic hydrocarbon A polycyclic aromatic hydrocarbon (PAH) is a class of organic compounds that is composed of multiple aromatic rings. The simplest representative is naphthalene, having two aromatic rings and the three-ring compounds anthracene and phenanthrene. ...
s, long carbon-chain molecules such as polyynes, and
fullerenes A fullerene is an allotrope of carbon whose molecule consists of carbon atoms connected by single and double bonds so as to form a closed or partially closed mesh, with fused rings of five to seven atoms. The molecule may be a hollow sphere, ...
are all potentially important. These types of molecule experience rapid and efficient deactivation when excited by a photon, which both broadens the spectral lines and makes them stable enough to exist in the interstellar medium.


Identification of C60+ as a carrier

the only molecule confirmed to be a DIB carrier is the
buckminsterfullerene Buckminsterfullerene is a type of fullerene with the formula C60. It has a cage-like fused-ring structure (truncated icosahedron) made of twenty hexagons and twelve pentagons, and resembles a soccer ball. Each of its 60 carbon atoms is bonded ...
ion, C60+. Soon after
Harry Kroto Sir Harold Walter Kroto (born Harold Walter Krotoschiner; 7 October 1939 – 30 April 2016), known as Harry Kroto, was an English chemist. He shared the 1996 Nobel Prize in Chemistry with Robert Curl and Richard Smalley for their discovery ...
discovered
fullerene A fullerene is an allotrope of carbon whose molecule consists of carbon atoms connected by single and double bonds so as to form a closed or partially closed mesh, with fused rings of five to seven atoms. The molecule may be a hollow sphere, ...
s in the 1980s, he proposed that they could be DIB carriers. Kroto pointed out that the ionised form C60+ was more likely to survive in the diffuse interstellar medium. However, the lack of a reliable laboratory spectrum of gas-phase C60+ made this proposal difficult to test. In the early 1990s, laboratory spectra of C60+ were obtained by embedding the molecule in solid ices, which showed strong bands in the near-infrared. In 1994,
Bernard Foing Bernard Foing is a French scientist at the European Space Agency (ESA), Executive Director of thInternational Lunar Exploration Working Group(ILEWG) and was Principal Project Scientist for SMART-1, the first European mission to the Moon. He is a ...
and Pascale Ehrenfreund detected new DIBs with wavelengths close to those in the laboratory spectra, and argued that the difference was due to an offset between the gas-phase and solid-phase wavelengths. However, this conclusion was disputed by other researchers, such as Peter Jenniskens, on multiple spectroscopic and observational grounds. A laboratory gas-phase spectrum of C60+ was obtained in 2015 by a group led by John Maier. Their results matched the band wavelengths that had been observed by Foing and Ehrenfreund in 1994. Three weaker bands of C60+ were found in interstellar spectra soon afterwards, resolving one of the earlier objections raised by Jenniskens. New objections were raised by other researchers, but by 2019 the C60+ bands and their assignment had been confirmed by multiple groups of astronomers and laboratory chemists.


See also

*
List of interstellar and circumstellar molecules This is a list of molecules that have been detected in the interstellar medium and circumstellar envelopes, grouped by the number of component atoms. The chemical formula is listed for each detected compound, along with any ionized form that has ...


References


External links


Entry in the Encyclopedia of Astrobiology, Astronomy, and Spaceflight


{{DEFAULTSORT:Diffuse Interstellar Band Astrochemistry Interstellar media Astronomical spectroscopy Unsolved problems in astronomy